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Abstract

We consider the quadratic eigenvalues problem (QEP) of gyroscopic systems ðl2Mþ lGþ KÞx ¼ 0, where M ¼

M>;G ¼ �G> and K ¼ K> 2 Rn�n with M being positive definite. Guo [Numerical solution of a quadratic eigenvalue

problem, Linear Algebra and its Applications 385 (2004) 391–406] showed that all eigenvalues of the QEP can be found by

solving the maximal solution of a nonlinear matrix equation Zþ A>Z�1A ¼ Q with quadratic convergence when the QEP

has no eigenvalues on the imaginary axis. The convergence becomes linear or more slower (Guo, 2004) when the QEP

allows purely imaginary eigenvalues having even partial multiplicities. In this paper, we consider the general case when the

QEP has eigenvalues on the imaginary axis. We propose an eigenvalue shifting technique to transform the original

gyroscopic system to a new gyroscopic system, which shifts purely imaginary eigenvalues to eigenvalues with nonzero real

parts, while keeps other eigenpairs unchanged. This transformation ensures that the new method for computing the

maximal solution of the nonlinear matrix equation converges quadratically. Numerical examples illustrate the efficiency of

our method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The quadratic eigenvalue problem (QEP) is to find scalars l 2 C and nonzero vectors x 2 Cn satisfying

QðlÞx ¼ ðl2Mþ lCþ KÞx ¼ 0, (1.1)

where M;C;K are n� n matrices. The scalar l and the nonzero vector x are called, respectively, the eigenvalue
and the (right) eigenvector corresponding to l. The nonzero vector y 2 Cn satisfying

y�QðlÞ ¼ y�ðl2Mþ lCþ KÞ ¼ 0

is called the left eigenvector corresponding to l. Here y� � ȳ> denotes the conjugate transpose of y. The
quadratic matrix polynomial QðlÞ in Eq. (1.1) is, generally, known as a quadratic pencil. The QEP arises
in a wide variety of applications, such as dynamics analysis of mechanical systems, fluid mechanics and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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vibro-acoustics, which has received much attention in recent years. A good survey of applications, spectral
theory, perturbation analysis and numerical approaches can be found in Ref. [2] and the references therein.

In this paper, we develop a numerical method for a special QEP of the form

GðlÞx ¼ ðl2Mþ lGþ KÞx ¼ 0, (1.2)

where M ¼M>;G ¼ �G>;K ¼ K> 2 Rn�n with M40 being positive definite. There is a second-order
differential equation

M€qðtÞ þG_qðtÞ þ KqðtÞ ¼ fðtÞ

associated with Eq. (1.2), which is known as a gyroscopic system. Gyroscopic systems correspond to spinning
structures where the Coriolis inertia forces are taken into account, and they are widely known to exhibit
instabilities [3,4].

It is well known that the 2n eigenvalues of GðlÞ has Hamiltonian properties, i.e., they are symmetrically
located with respect to the real and imaginary axes. Furthermore, if x is the right eigenvector corresponding to
an eigenvalue l, then x̄ is the eigenvector (or the left eigenvector) corresponding to l̄ (or �l). When K is
positive definite, all eigenvalues of GðlÞ are purely imaginary and semisimple, and the system is stable. Strong
stability, which refers to a system and all its neighbors being stable, has been investigated in Ref. [4]. When K

is negative definite, the eigenvalues of GðlÞ are not necessarily purely imaginary and semisimple, hence the
system is not guaranteed to be stable [2].

In this paper, we consider the QEP (1.2) with K being negative semidefinite, and we are interested in finding
all 2n eigenvalues and the associated eigenvectors. A standard approach for finding all eigenpairs of the QEP is
to work with a 2n� 2n linearized form and compute its generalized Schur form. However, such approaches
cannot generally keep the Hamiltonian structure. To this end, we can transform the QEP (1.2) to a
Hamiltonian eigenvalue problem [2], and then apply the structure-preserving methods [5,6] for computing all
eigenvalues. The skew-Hamiltonian structure is preserved in both methods by the use of symplectic
orthogonal transformations. Note that these methods work on matrices of dimension 2n and produce no
eigenvectors. Mehrmann and Watkins [7] proposed a structure-preserving shift-and-invert Krylov subspace
method for the computation of a few eigenvalues and eigenvectors of large, sparse skew-Hamiltonian/
Hamiltonian pencils, and applied the method to the QEP (1.2). Recently, Guo [1] shows that all the eigenpairs
of the QEP (1.2) can be solved by finding a proper solvent S of the quadratic matrix equation
MS2 þGSþ K ¼ 0, which is equivalent to find the maximal solution Zþ of a nonlinear matrix equation
(NME) Zþ A>Z�1A ¼ Q, with A ¼Mþ KþG and Q ¼ 2ðM� KÞ. The numerical approach for the NME
developed in Ref. [1] is based on the cyclic reduction method [8]. The method is quadratically convergent if
cðlÞ � l2A> þ lQþ A has no unimodular eigenvalues, and is linearly convergent if all unimodular
eigenvalues of Z�1þ A are semisimple. Another efficient method for solving the NME based on the SDA
algorithm [9] is shown to be linearly convergent if the unimodular eigenvalues of Z�1þ A have half of the partial
multiplicity of the associated unimodular eigenvalue of cðlÞ.

Linear convergence is poor. The main purpose of this paper is to provide a new technique to shift the purely
imaginary eigenvalues, while keeping the other eigenpairs unchanged. We then apply the structure-preserving
methods in Ref. [1] or [9] to find the maximal solution of the resulted NME with quadratic convergence.

The paper is organized as follows. In Section 2, we review some results in Ref. [1] on how to solve the QEP
by the solvent approach, and the SDA algorithm and the related convergence analysis in Refs. [10,9]. The
main technique of shifting the purely imaginary eigenvalues of the QEP is developed in Section 3. Some
numerical examples are shown in Section 4 to illustrate the efficiency of our approach. Some conclusions are
given in Section 5.
2. Solving the QEP

As described in Section 1, the classical approach for finding all 2n eigenpairs of the QEP is to use
linearizations and solve the resulting 2n� 2n standard or generalized eigenvalue problem. These methods
operate in dimensions twice that of the original problem. Another approach is to factorize GðlÞ in Eq. (1.2). It
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is well known that GðlÞ has the factorization

GðlÞ ¼ ðlMþMSþGÞðlI� SÞ (2.1)

if and only if S is a solution of the quadratic matrix equation

MS2 þGSþ K ¼ 0. (2.2)

Such an S is called a solvent of Eq. (2.2) [3]. If Eq. (2.2) has a solvent S, then the eigenvalues of GðlÞ are those
of S and those of the matrix pencil lMþMSþG. However, Eq. (2.2) may not have any solvent. Even if the
solvent exists, the computation involved may be difficult. Fortunately, for the special QEP (1.2), Guo ([1],
Lemma 1) proved that if the QEP (1.2) has no eigenvalues on the imaginary axis, then the matrix equation
(2.2) has a real solvent whose eigenvalues are on the right half-plane. Therefore, if we can find such S, the
remaining n eigenvalues of GðlÞ are obtained by symmetry without any computation. Moreover, since S is
real, the complex eigenvalues of S must appear in complex conjugate pairs. Together with the eigenvalues on
the left half-plane obtained by symmetry, the Hamiltonian structure for the eigenvalues of the QEP (1.2) is
preserved. The eigenvectors can be obtained from the factorization (2.1) and the properties of eigenvectors of
the QEP (1.2). If xi and yi are, respectively, the right and left eigenvectors corresponding to an eigenvalue li of
the solvent S, or

Sxi ¼ lixi; y�i S ¼ liy
�
i ,

then xi and ðliMþMSþGÞ�>ȳi are eigenvectors corresponding to �li, both eigenvalues of the QEP (1.2).
It seems difficult to find the solvent of Eq. (2.2) directly whose eigenvalues are on the right half-plane.

Instead, the Cayley transformation S ¼ ðIþ YÞðI� YÞ�1 is used (see Ref. [1]). Eq. (2.2) then becomes

A>Y2 þQYþ A ¼ 0, (2.3)

where

A ¼Mþ KþG; Q ¼ 2ðM� KÞ40. (2.4)

Recall that the eigenvalues of S lie on the right half-plane. With the Cayley transformation, we are now
interested in the solution Y of Eq. (2.3) whose eigenvalues are inside the unit circle. With Y ¼ �Z�1A in Eq.
(2.3), we arrive at the NME:

Zþ A>Z�1A ¼ Q. (2.5)

The solution Z of Eq. (2.5) satisfies rðZ�1AÞo1 or rðZ�1AÞp1 under appropriate assumptions. Here rð�Þ
denotes the spectral radius of a matrix.

Eq. (2.5) has been well studied in Refs. [8,10–12]. We are interested in finding the maximal symmetric
positive definite solution of Eq. (2.5). A symmetric positive definite solution Zþ is called a maximal solution if
ZþXZ for any symmetric positive definite solution Z of Eq. (2.5). Here Z1XZ2 ðZ14Z2Þ means that Z1 �

Z2X0 positive semidefinite (40 positive definite). The following result about the maximal solution of NME
was given in Refs. [11,12]:

Theorem 2.1. Eq. (2.5) has a symmetric positive definite solution if and only if cðlÞ ¼ lAþQþ l�1A> is

regular (i.e., the determinant of cðlÞ is not identically zero) and cðlÞX0 for all l on the unit circle. Furthermore,
if Eq. (2.5) has a symmetric positive definite solution, it has a maximal solution Zþ with rðZ�1þ AÞp1. For any

other symmetric positive definite solution Z, it holds rðZ�1AÞ41. Moreover, rðZ�1þ AÞo1 if and only if cðlÞ40

for all l on the unit circle.

Two theorems in Ref. [1] show the relations between the NME (2.5) and the QEP (1.2).

Theorem 2.2 (Guo [1, Theorem 6]). The QEP (1.2) has no eigenvalues on the imaginary axis if and only if

cðlÞ ¼ lAþQþ l�1A>40 for all l on the unit circle, where the matrices A;Q are given in Eq. (2.4).

Theorem 2.3 (Guo [1, Theorem 7]). Assume that cðlÞX0 for all l on the unit circle and let Zþ be the maximal

solution of Eq. (2.5). Then the eigenvalue of �Z�1þ A are precisely the eigenvalues of fðlÞ ¼ l2A> þ lQþ A

inside or on the unit circle, with the same partial multiplicities for each eigenvalue inside the unit circle and with

half of the partial multiplicities for each unimodular eigenvalue.
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Guo [1] also proved that mi is an eigenvalue of fðmÞ if and only if li ¼ ð1þ miÞ=ð1� miÞ is an eigenvalue of
GðlÞ, and the partial multiplicities of mi and li are invariant. Together with these two theorems, we can see that
all eigenvalues of the QEP (1.2) can be found by solving the eigenvalues of �Z�1þ A, where Zþ is the maximal
solution of Eq. (2.5), under the assumption that cðlÞX0 for all l on the unit circle. Moreover, if xi and yi are,
respectively, the right and left eigenvectors of �Z�1þ A corresponding to mi, then xi and yi are, respectively, the
right and left eigenvectors of S ¼ ðI� Z�1þ AÞðIþ Z�1þ AÞ�1 corresponding to li ¼ ð1þ miÞ=ð1� miÞ. Hence, xi

and ðliMþMSþGÞ�>ȳi are the eigenvectors of the QEP corresponding to �li.
The problem is now reduced to computing the maximal solution of Eq. (2.5) efficiently. Several numerical

methods have been proposed, including the cyclic reduction method [8] and the structure-preserving doubling
algorithm [9]. These algorithms are similar, but the convergence analysis of the structure-preserving doubling
algorithm is simpler. The structure-preserving doubling algorithm is as follows.

Algorithm 2.1.

A0 ¼ A; Q0 ¼ Q; P0 ¼ 0,

Akþ1 ¼ AkðQk � PkÞ
�1Ak,

Qkþ1 ¼ Qk � A>k ðQk � PkÞ
�1Ak,

Pkþ1 ¼ Pk � AkðQk � PkÞ
�1A>k .

One step of Algorithm 2.1 requires 7
3

n3 flops, similar to that of the cyclic reduction method [8].

To ensure that the iteration in Algorithm 2.1 is well-defined, Qk � Pk must be symmetric positive definite
for all k. This is guaranteed by the theorem in Ref. [9], which describes the convergence of Algorithm 2.1.

Theorem 2.4 (Lin and Xu [9]). Assume that Z40 is a solution of Eq. (2.5), and let R ¼ Z�1A. Then the matrix

sequences fAkg; fQkg and fPkg generated by Algorithm 2.1 are well-defined and satisfy:
1.
 Ak ¼ ðZ� PkÞR
2k

;

2.
 0pPkpPkþ1oZ and Qk � Pk ¼ ðZ� PkÞ þ A>k ðZ� PkÞ

�1Ak40;
k k k k
3.
 ZpQkþ1pQkpQ and Qk � Z ¼ ðR>Þ2 ðZ� PkÞR
2 pðR>Þ2 ZR2 .
Moreover, if the maximal solution Zþ satisfies rðSþÞo1, where Sþ ¼ Z�1þ A, we have

kAkk2pkZþk2kS
2k

þ k2! 0 as k!1,

kZþ �Qkk2pkZþk2kS
2k

þ k
2
2! 0 as k!1.

Theorem 2.4 shows that Algorithm 2.1 converges quadratically when no eigenvalues of Z�1þ A lies on the unit
circle. When rðZ�1þ AÞ ¼ 1, Chu et al. [10] proved the following result.

Theorem 2.5. Assume that Zþ is the maximal solution of Eq. (2.5), and rðZ�1þ AÞ ¼ 1. If the partial multiplicities

of Z�1þ A associated with the unimodular eigenvalues are all even, then the matrix sequence fQkg generated by

Algorithm 2.1 converges to Zþ with convergence rate 1=2.

3. Eigenvalue shifting

Theorem 2.2, together with Theorems 2.1 and 2.4, show that if the QEP (1.2) has no eigenvalues on the
imaginary axis, the matrix sequence fQkg generated by Algorithm 2.1 converges quadratically to the maximal
solution Zþ of the NME (2.5). However, if the QEP (1.2) has eigenvalues on the imaginary axis, then
cðlÞ ¼ l2A> þ lQþ A has eigenvalues on the unit circle (because of the Cayley transformation involved).
Hence if the conditions in Theorem 2.5 hold, Algorithm 2.1 still converges, but with a linear or slower
convergence rate. So it is desirable to shift purely imaginary eigenvalues away from the imaginary axis while
keeping the remaining eigenpairs invariant.
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Chu et al. [13] discussed model updating problems with no spill-over for quadratic pencils, which
incorporates the original quadratic model with some measured data. The updated model matches the
measured data preserving part of original eigenstruture. Based on this approach, we transform the original
gyroscopic system ðM;G;KÞ to a new gyroscopic system

ð ~M; ~G; ~KÞ � ðMþ DM;Gþ DG;Kþ DKÞ,

with DM ¼ DM>;DG ¼ �DG>;DK ¼ DK> such that the original eigenvalues on the imaginary axis are
shifted away from the imaginary axis while preserving the other part of the original eigenstructure.

It is well known that for GðlÞ, there exist an n� 2n eigenvector matrix X and an 2n� 2n eigenvalue matrix J

in Jordan canonical form such that
J

XJ

� �
is nonsingular and

MXJ2 þGXJþ KX ¼ 0. (3.1)

Here ðX; JÞ is referred to as a Jordan pair of GðlÞ. Suppose that J and X are partitioned as J ¼ diagðJ1;J2Þ and
X ¼ ½X1 X2�, where X1 consists of the generalized eigenvectors corresponding to J1. The following theorem
gives an orthogonalization relationship between eigenvalue matrices and eigenvector matrices.

Theorem 3.1. Consider GðlÞ ¼ l2Mþ lGþ K with M ¼M> being positive definite, G ¼ �G>;K ¼ K>. Let

ðX1; J1Þ and ðX2;J2Þ be defined as above. If sðJ1Þ \ sð�J2Þ ¼ ;, then we have

ðiÞ J>1 X
>
1 MX2J2 þ X>1 KX2 ¼ 0, ð3:2Þ

ðiiÞ J>1 X
>
1 GX2J2 � X>1 KX2J2 þ J>1 X

>
1 KX2 ¼ 0, ð3:3Þ

ðiiiÞ X>1 MX2J2 � J>1 X
>
1 MX2 þ X>1 GX2 ¼ 0. ð3:4Þ

Proof. We first prove Eq. (3.4). Obviously, ðX1; J1Þ and ðX2;J2Þ satisfy

MX2J
2
2 þGX2J2 þ KX2 ¼ 0, ð3:5Þ

J2>1 X>1 M� J>1 X
>
1 Gþ X>1 K ¼ 0. ð3:6Þ

Multiplying Eqs. (3.5) and (3.6) by X>1 and X2 on the left and the right, respectively, and eliminating X>1 KX2

we obtain

X>1 MX2J
2
2 þ X>1 GX2J2 ¼ J2>1 X>1 MX2 � J>1 X

>
1 GX2. (3.7)

Rewrite Eq. (3.7) into

ðX>1 MX2J2 � J>1 X
>
1 MX2 þ X>1 GX2ÞJ2

þ J>1 ðX
>
1 MX2J2 � J>1 X

>
1 MX2 þ X>1 GX2Þ ¼ 0. ð3:8Þ

By the assumption sðJ1Þ \ sð�J2Þ ¼ ; and applying the Lyapunov Theorem to Eq. (3.8) we get

X>1 MX2J2 � J>1 X
>
1 MX2 þ X>1 GX2 ¼ 0.

The relations of Eqs. (3.2) and (3.3) can be shown in a similar way by eliminating the ‘G-term’ and ‘M-term’ in
Eqs. (3.5) and (3.6), respectively. &

Now we assume that J1 contains all eigenvalues lying on the imaginary axis. To avoid complex arithmetic,
we assume that J1 2 Rk�k and X1 2 Rn�k are of the forms

J1 ¼ diagðP1; . . . ;Ps; N1; . . . ;NtÞ; X1 ¼ ½Y1; . . . ;Ys; Z1; . . . ;Zt�, (3.9)
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with

Pj ¼

Kj I

. .
. . .

.

Kj I

Kj

2
6666664

3
7777775
2 R2mj�2mj ; Kj ¼

0 aj

�aj 0

" #
, ð3:10Þ

Yj ¼ ½y
ðjÞ
1R; y

ðjÞ
1I ; . . . ; y

ðjÞ
mjR
; y
ðjÞ
mjI
� 2 Rn�2mj ; j ¼ 1; . . . ; s

and

Nj ¼

0 1

. .
. . .

.

0 1

0

2
666664

3
777775 2 Rnj�nj , ð3:11Þ

Zj ¼ ½z1; . . . ; znj
� 2 Rn�nj ; j ¼ 1; . . . ; t.

Here Pj contains the purely imaginary eigenvalues �iaj with partial multiplicities mj and mj, and y
ðjÞ
1R �

iy
ðjÞ
1I ; . . . ; y

ðjÞ
mjR
� iy

ðjÞ
mjI

are the associated generalized eigenvectors (j ¼ 1; . . . ; s); Nj contains the zero eigenvalues
with partial multiplicities nj, and z1; . . . ; znj

are the associated generalized eigenvectors ðj ¼ 1; . . . ; tÞ. We say
that x1; . . . ;xm are the generalized eigenvectors corresponding to the eigenvalue l0 provided that

Gðl0Þx1 ¼ 0;

Gðl0Þx2 þ ð2l0MþGÞx1 ¼ 0;

Gðl0Þx3 þ ð2l0MþGÞx2 þMx1 ¼ 0;

..

.

Gðl0Þxm þ ð2l0MþGÞxm�1 þMxm�2 ¼ 0:

(3.12)

On the other hand, ðX2; J2Þ is the part of eigenstructure with eigenvalues having nonzero real parts which we
want to preserve. Hence, the triplet of ðDM;DG;DKÞ satisfies

ðMþ DMÞX2J
2
2 þ ðGþ DGÞX2J2 þ ðKþ DKÞX2 ¼ 0.

From Eq. (3.5) it implies

DMX2J
2
2 þ DGX2J2 þ DKX2 ¼ 0. (3.13)

The next theorem gives a sufficient condition for Eq. (3.13).

Theorem 3.2. Let

DM ¼MX1UX>1 M, (3.14)

DG ¼MX1UX>1 GþGX1UX>1 M�MX1UJ>1 X
>
1 MþMX1J1UX>1 M, (3.15)

DK ¼ ðMX1J1 þGX1ÞUð�J
>
1 X
>
1 Mþ X>1 GÞ. (3.16)

Then for any real symmetric matrix U, ðDM;DG;DKÞ defined by Eqs. (3.14)–(3.16) is a solution to Eq. (3.13)
satisfying DM ¼ DM>;DG ¼ �DG>;DK ¼ DK>.

Proof. It is easy to verify that if U is symmetric, ðDM;DG;DKÞ defined by Eqs. (3.14)–(3.16) satisfies
DM ¼ DM>;DG ¼ �DG>;DK ¼ DK>.

Since J1 contains all eigenvalues on the imaginary axis, the condition sðJ1Þ \ sð�J2Þ ¼ ; is
automatically satisfied, thus Eq. (3.4) holds. By direct calculations using Eqs. (3.14)–(3.16), and
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from Eq. (3.4), we have

DMX2J
2
2 þ DGX2J2 þ DKX2

¼MX1UX>1 MX2J
2
2 þMX1UX>1 GX2J2 �MX1UJ>1 X

>
1 MX2J2 þGX1UX>1 MX2J2

þMX1J1UX>1 MX2J2 þ ðMX1J1 þGX1ÞUð�J
>
1 X
>
1 Mþ X>1 GÞX2

¼MX1UðX
>
1 MX2J2 � J>1 X

>
1 MX2 þ X>1 GX2ÞJ2

þ ðMX1J1 þGX1ÞUðX
>
1 MX2J2 � J>1 X

>
1 MX2 þ X>1 GX2Þ

¼ 0: & ð3:17Þ

Remark. (i) In Theorem 3.2, we use Eq. (3.4) to show that Eq. (3.13) holds. Similarly, we can use Eq. (3.2) to
show that ðDM;DG;DKÞ of the forms

DM ¼MX1J1UJ>1 X
>
1 M,

DG ¼MX1J1UX>1 K� KX1UJ>1 X
>
1 M,

DK ¼ �KX1UX>1 K

with U being symmetric, also satisfies (3.13). Unfortunately, if K is singular, then Kþ DK ¼ ðI� KX1UX>1 ÞK

is still singular. Consequently, the zeroes eigenvalues of the original gyroscopic system are invariant in the new
updated gyroscopic system. This is not the case what we required.

(ii) In Theorem 3.2 we show that the eigenstructure ðX2;J2Þ of the original model ðM;G;KÞ is preserved in
the new updated model when the incremental triplet ðDM;DG;DKÞ is given by Eqs. (3.14)–(3.16).

The following theorem shows that the relation of eigenvalues between the original model and the updated
model.

Theorem 3.3. Let ðDM;DG;DKÞ be given by Eqs. (3.14)–(3.16). Define ð ~M; ~G; ~KÞ � ðMþ DM;
Gþ DG;Kþ DKÞ. Then the eigenvalues of ~GðlÞ ¼ l2 ~Mþ l ~Gþ ~K are those of J2 together with those of the

matrix pencil

ðJ1 þUJ>1 X
>
1 MX1 �UX>1 GX1; IþUX>1 MX1Þ. (3.18)

Proof. From MX1J
2
1 þGX1J1 þ KX1 ¼ 0, we have

GðlÞX1 ¼ ðl
2Mþ lGþ KÞX1 ¼ ðlMX1 þMX1J1 þGX1ÞðlI� J1Þ

which implies that

ðlMX1 þMX1J1 þGX1Þ ¼ GðlÞX1ðlI� J1Þ
�1.

From Eqs. (3.14)–(3.16), we have

~GðlÞ ¼ l2ðMþ DMÞ þ lðGþ DGÞ þ ðKþ DKÞ

¼ GðlÞ þ l2MX1UX>1 Mþ lðMX1UX>1 GþGX1UX>1 M�MX1UJ>1 X
>
1 M

þMX1J1UX>1 MÞ þ ðMX1J1 þGX1ÞUð�J
>
1 X
>
1 Mþ X>1 GÞ

¼ GðlÞ þ ðlMX1 þMX1J1 þGX1ÞUðlX>1 M� J>1 X
>
1 Mþ X>1 GÞ

¼ GðlÞ þ GðlÞX1ðlI� J1Þ
�1UðlX>1 M� J>1 X

>
1 Mþ X>1 GÞ

¼ GðlÞðIþ X1ðlI� J1Þ
�1UðlX>1 M� J>1 X

>
1 Mþ X>1 GÞÞ.
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Hence, with the help of detðIþ RSÞ ¼ detðIþ SRÞ, where R 2 Cn�m and S 2 Cm�n, we have

det ~GðlÞ
� �
¼ det GðlÞð Þ det Iþ X1ðlI� J1Þ

�1UðlX>1 M� J>1 X
>
1 Mþ X>1 GÞ

� �
¼ det GðlÞð Þ det Iþ ðlI� J1Þ

�1UðlX>1 MX1 � J>1 X
>
1 MX1 þ X>1 GX1Þ

� �
¼ det GðlÞð Þ det ðlI� J1Þ

�1
� �

det lI� J1 þUðlX>1 MX1 � J>1 X
>
1 MX1 þ X>1 GX1Þ

� �
¼ det GðlÞð Þ det ðlI� J1Þ

�1
� �

det lðIþUX>1 MX1Þ � ðJ1 þUJ>1 X
>
1 MX1 �UX>1 GX1Þ

� �
.

Since GðlÞ has the eigenvalues of J1, the above equality shows that ~GðlÞ and GðlÞ share the same spectrum,
except that the eigenvalues of J1 are replaced by those in

ðJ1 þUJ>1 X
>
1 MX1 �UX>1 GX1; IþUX>1 MX1Þ: &

Remark. (i) Theorem 3.3 shows that ~GðlÞ keeps the eigenvalues of GðlÞ with nonzero real parts and changes
all purely imaginary eigenvalues of GðlÞ to those eigenvalues of the pencil in Eq. (3.18). The new updated
quadratic pencil ~GðlÞ, generically, has no eigenvalues on the imaginary axis for a randomly chosen symmetric
matrix U.

(ii) If U is chosen to be positive semidefinite, then DM defined in Eq. (3.14) is positive semidefinite, and DK
in Eq. (3.16) is negative semidefinite, which ensures that the corresponding ~Q ¼ 2ð ~M� ~KÞ is still positive
definite.

For the computation of ðX1;J1Þ, we apply the Newton’s method [14] to find a purely imaginary eigenvalue
io of GðlÞ and the associated eigenvector yþ iz satisfying GðioÞðyþ izÞ ¼ 0. This eigenequation can be
reformulated by the nonlinear equation in f � ½y>; z>; o�> with an additional normalization condition:

T

y

z

o

2
64

3
75

0
B@

1
CA � TðfÞ �

T1ðfÞ

T2ðfÞ

T3ðfÞ

2
64

3
75 ¼

ð�o2Mþ KÞyþ oGz

�oGyþ ð�o2Mþ KÞz

y>yþ z>z� 1

2
64

3
75 ¼ 0. (3.19)

We differentiate and obtain the Fréchet derivative of Eq. (3.19)

T 0
y

z

o

2
64

3
75

0
B@

1
CA ¼

�o2Mþ K oG �2oMyþGz

�oG �o2Mþ K �Gy� 2oMz

2y> 2z> 0

2
64

3
75. (3.20)

Newton’s method now amounts to solving a ð2nþ 1Þ-dimensional linear system in each iteration with an
initial vector f0:

T 0ðfkÞðfkþ1 � fkÞ ¼ �TðfkÞ, (3.21)

where fk � ½y
>
k ; z

>
k ; o

ðkÞ�>. The Newton’s method (3.21) is equivalent to the inverse iteration which is more
conveniently formulated as

�oðkÞ
2

Mþ K oðkÞG

�oðkÞG �oðkÞ
2

Mþ K

" #
ukþ1

vkþ1

" #
¼
�2oðkÞMyk þGzk

�Gyk � 2oðkÞMzk

" #
, (3.22a)

oðkþ1Þ ¼ oðkÞ �
1

y>k ukþ1 þ z>k vkþ1

, (3.22b)

ykþ1

zkþ1

" #
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u>kþ1ukþ1 þ v>kþ1vkþ1

q ukþ1

vkþ1

" #
. (3.22c)

The symmetric linear system (3.22a) can be solved by the LDL>-factorization (see e.g. Ref. [15]) which
requires 8

3
n3 flops.
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Once the inverse iteration (3.22) converges to ½y>; z>; o�>, we can apply Eq. (3.12) by setting l0 ¼ io and
x1 ¼ yþ iz to compute the Jordan basis X1o and the Jordan block J1o corresponding to io. The following
algorithm computes the Jordan basis X1 and the Jordan block J1 corresponding to purely imaginary
eigenvalues of GðlÞ. For convenience, we suppose that the geometrical multiplicity of each nonzero purely
imaginary eigenvalues is one.

Algorithm 3.1 (Initiation). J1 ¼ ;;X1 ¼ ;;T ¼ ;;U ¼ ;;K1:¼K;Rb1;oð0Þ ¼ e40;Tol ¼ tolerance;
1.
 If K1 is singular or nearly singular, then
1.1. Compute kK1x1kpTol with x1 ? U and kx1k ¼ 1;
1.2. Set o:¼0;U:¼½U; x1�;K1:¼K1 �UU>, go to 5; else
2.
 If oð0Þ4R, stop; else

3.
 Choose yð0Þ þ izð0Þ ? U with kyð0Þ þ izð0Þk ¼ 1;

4.
 Compute Eq. (3.22) until convergence; Set o oðkþ1Þ;x1 yðkþ1Þ þ izðkþ1Þ;U ¼ ½U; x1�;

5.
 j ¼ 2;x0 ¼ 0;X1o ¼ ½x1�;J1o ¼ ½io�;

5.1. Compute kn>1 GðioÞkpTol with kn1k ¼ 1;
5.2. Compute b ¼ �ð2ioMþGÞxj�1 �Mxj�2,

If n>1 bbTol, then go to 6; else

Solve GðioÞxj ¼ b,

X1o:¼½X1o; xj�; J1o:¼
J1o e�

0 io

� �
, where e� ¼ ½0; . . . ; 0; 1�

>,

j j þ 1;xj�2 xj�1;xj�1  xj, repeat 5.2;
6.
 X1:¼½X1; X1o�;J1:¼J1 	 J1o;T :¼T [ fiog;

If K1 is singular or nearly singular go to 1.1; else

oð0Þ  oð0Þ þ 2jo� oð0Þj; go to 2.
Remark. (i) The shift-strategy oð0Þ:¼oð0Þ þ 2jo� oð0Þj in Step 6 is proposed by Ericsson and Ruhe [16].
(ii) The solution xj of the symmetric linear system GðioÞxj ¼ b in Step 5.2 can be regarded as a deflated

solution and can be solved by the LDL>—factorization obtained by the ðk þ 1Þ—step in Eq. (3.16) [17].

In summary, we have the following algorithm for solving the QEP (1.2).

Algorithm 3.2.
1.
 Compute ðX1;J1Þ by Algorithm 3.1, and choose a real symmetric positive semidefinite matrix U.

2.
 Compute the eigenvalues of the matrix pencil (3.18).

3.
 Compute DM;DG;DK defined by Eqs. (3.14)–(3.16), and set

A ¼Mþ DMþGþ DGþ Kþ DK; Q ¼ 2ðMþ DM� K� DKÞ.
4.
 Apply Algorithm 2.1 to find the maximal solution Zþ for the NME (2.5).

5.
 Find the eigenvalues mj of �Z

�1
þ A, for j ¼ 1; . . . ; n.
6.
 Compute the eigenvalues li ¼ ð1þ miÞ=ð1� miÞ on the right half-plane, and obtain the eigenvalues on the
left half-plane by symmetry.
7.
 Replace the eigenvalues of the matrix pencil (3.18) by those of J1.

8.
 If eigenvectors are required, compute the right and left eigenvectors xi and yi of �Z

�1
þ A corresponding to mj

in Step 5 first, and then compute eigenvectors xi and ðliMþMSþGÞ�>ȳi of GðlÞ corresponding to �li,
respectively.
9.
 Replace the eigenvectors corresponding to the eigenvalues of the matrix pencil (3.18) by the columns of X1.
Remark. For the choice of U in Step 1, numerical experiments show that letting U ¼ gI is generally good
enough. We are to find a suitable g such that the resulted eigenvalues of the pencil (3.18) after the Cayley
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transformation are far from the unit circle which speeds up the convergence of Algorithm 2.1. If g ¼ 0, the
eigenvalues of the pencil (3.18) are just those of J1, which lie on the unit circle after the Cayley transformation.
On the other hand, if g is chosen large, the norms of DM;DG;DK in Eqs. (3.14)–(3.16) may be too large to
cause large errors to eigenvalues of the original pencil. Considering these two facts, we choose a g between 1
and a suitable positive number so that the distance to the unit circle is maximized. Fortunately, numerical
experiments show that a few steps of Fibonacci line search is sufficiently good to find a desired g.

4. Numerical examples

To illustrate the performance of Algorithm 3.2, we present numerical results of three examples, using
MATLAB 6.5 with machine accuracy � ¼ 2:22� 10�16.

Example 1. Let

M1 ¼ I6; G1 ¼
0 1

�1 0

� �
	

0 2

�2 0

� �
	

0 g

�g 0

" #
; K1 ¼

0 0

0 �2

� �
	

0 0

0 a

� �
	
�1 0

0 b

� �

with a ¼ �5:000002000001; b ¼ �16:000016000004; g ¼ 9:000012000003. We randomly generate an ortho-
gonal matrix Q and define the coefficient matrices for the QEP (1.2) by

M ¼ QM1Q
>; G ¼ QG1Q

>; K ¼ QK1Q
>.

The QEP has four zero eigenvalues with partial multiplicities 2 and 2, and the other nonzero eigenvalues
�1;�1:000001;�2;�2:000001.

Table 1 shows the numerical result by applying Algorithm 3.2 with U ¼ 50I and Algorithm 3 in Ref. [1]
(Guo’s algorithm), respectively, to Example 1. Here and hereafter, ‘No. of iterations’ refers to the number of
iteration steps of Algorithm 2.1 (SDA algorithm) applied to the NME (2.5), ‘Residuals’ refers to kðl2Mþ
lGþ KÞxk2 for an computed eigenpairs ðl;xÞ, and ‘Total flops’ denotes the total flop counts for the
computation of ðX1;J1Þ and the desired Zþ by Algorithm 3.1 and Algorithm 2.1, respectively. Algorithm 3.1
needs about 8

3
n3 þOðn2Þ flops to find ðX1;J1Þ for the zero eigenvalues. So, the total flops are

8
3

n3 þ 6� 7
3

n3 þOðn2Þ.
Obviously, Algorithm 3.2 and Guo’s algorithm converge with the same accuracy, while Algorithms 3.2

converges much faster than Guo’s algorithm. The detailed convergence behaviors of both algorithms are
illustrated in Table 2, where the quadratic convergence for Algorithm 3.2 and the linear convergence for Guo’s
algorithm are clearly shown.

Example 2. Let

M1 ¼ I6; G1 ¼
0

ffiffiffiffiffi
15
p

�
ffiffiffiffiffi
15
p

0

" #
	

0 1

�1 0

� �
	

0
ffiffiffi
7
p

�
ffiffiffi
7
p

0

" #
,

K1 ¼
1 0

0 �16

� �
	
�2 0

0 �2

� �
	
�2 0

0 �2

� �
.

Table 1

Numerical results of Example 1

Algorithm 3.2 Guo’s algorithm

No. of iterations 6 44

Residuals o10�13 o10�13

Total flops 50
3

n3 þOðn2Þ 308
3

n3 þOðn2Þ
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Table 2

Convergence behaviors of both algorithms for Example 1

Iteration steps Algorithm 3.2 Iteration steps Guo’s algorithm

1 7:936� 10�1 ..
. ..

.

2 6:343� 10�3 35 1:008� 10�8

3 2:186� 10�4 36 4:992� 10�9

4 1:185� 10�7 37 2:399� 10�9

5 1:043� 10�14 38 1:029� 10�9

6 0 ..
. ..

.

Table 3

Numerical results of Example 2

Algorithm 3.2 Guo’s algorithm

No. of iterations 7 410 000

Residuals o10�12 41

Total flops 121
3

n3 þOðn2Þ � � ��

Table 4

Convergence behaviors of Algorithm 3.2 for Example 2

Iteration steps Algorithm 3.2

1 7:149� 10�1

2 6:465� 10�2

3 1:993� 10�3

4 2:018� 10�6

5 7:883� 10�9

6 1:203� 10�13

7 0
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We randomly generate an orthogonal matrix Q and define

M ¼ QM1Q
>; G ¼ QG1Q

>; K ¼ QK1Q
>

for the coefficient matrices of the QEP (1.2). The QEP has two purely imaginary eigenvalues �2i having
partial multiplicities 1 and 1, and the other eigenvalues �2;�1

2
�

ffiffi
7
p

2
i and �

ffiffi
7
p

2
� 1

2
i. Note that K is indefinite in

this example, but M� K is positive semidefinite. Hence both Algorithm 3.2 and Guo’s algorithm still work for
this example.

Inverse iteration of Step 4 in Algorithm 3.1 converges in 9 steps to �2i and the associated eigenvectors. So,
to find ðX1;J1Þ by Algorithm 3.1 needs about 72

3
n3 þOðn2Þ flops. Then we choose U ¼ I in Algorithm 3.2 to

compute the desired Zþ which needs about 7� 7
3

n3 þOðn2Þ flops.
Tables 3 and 4 show the numerical results of Algorithm 3.2 and Guo’s algorithm. Table 4 clearly shows the

quadratic convergence of Algorithm 3.2, while Guo’s algorithm does not converge after 10 000 steps, since two
purely imaginary eigenvalues are transformed on the unit circle with partial multiplicities 1 and 1 by the
Cayley transform, which violates the condition in Theorem 2.5.

Example 3. Consider the QEP (1.2) with coefficient matrices

M ¼M1 	
1 0

0 1

� �
; G ¼ G1 	

0 3

�3 0

� �
; K ¼ K1 	

�4 0

0 �1

� �
,
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Fig. 1. Eigenvalues of Example 3.

Table 5

Numerical results of Example 3

Algorithm 3.2 Guo’s algorithm

No. of iterations steps 7 31

Residuals o10�15 o10�15

Total flops 89
3

n3 þOðn2Þ 217
3

n3 þOðn2Þ

Table 6

Convergence behaviors of both algorithms for Example 3

Iteration steps Algorithm 3.2 Iteration steps Guo’s algorithm

1 5:275� 10�1 ..
. ..

.

2 9:049� 10�2 24 1:629� 10�8

3 8:476� 10�3 25 8:095� 10�9

4 1:562� 10�4 26 3:950� 10�9

5 1:964� 10�6 27 1:796� 10�9

6 7:544� 10�11 28 6:324� 10�10

7 0 ..
. ..

.
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where M1;G1 and K1 are 100� 100 matrices chosen from Example 6.1 of Ref. [7]. The eigenvalues of the QEP
computed by the Matlab function ‘polyeig’ are plotted in Fig. 1, with two eigenvalues �

ffiffiffi
2
p

i on the imaginary
axis having partial multiplicities 2 and 2.

Inverse iteration of Step 4 in Algorithm 3.1 converges in 5 steps to obtain the purely imaginary eigenvalues
�

ffiffiffi
2
p

i and the associated eigenvectors. So, Algorithm 3.1 needs about 40
3

n3 þOðn2Þ flops for finding ðX1;J1Þ.
Next we choose U ¼ 50I in Algorithm 3.2 to compute the desired Zþ which needs about 7� 7

3
n3 þOðn2Þ flops.

Table 5 shows the numerical result of Algorithm 3.2 and Guo’s algorithm, and Table 6 illustrates the
convergence behaviors of both algorithms. Clearly, both algorithms converge with high accuracy, while
Algorithm 3.2 converges much faster than Guo’s algorithm. These three examples clearly show the benefit of
shifting technique of purely imaginary eigenvalues.
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5. Conclusions

In Ref. [1], Guo proposed an algorithm for computing all eigenvalues of a quadratic eigenvalue problem
arising from gyroscopic systems, by finding a proper solvent of the quadratic matrix equation
MS2 þGSþ K ¼ 0. Using a fine transformation, the problem can be transformed by solving the maximal
solution of the nonlinear matrix equation Zþ A>Z�1A ¼ Q with A ¼MþGþ K and Q ¼ 2ðM� KÞ. A
cyclic reduction method, or the equivalent SDA method, can be applied. This approach preserves the
Hamiltonian structure of the spectrum of the QEP, and is less expensive than the linearization approach
followed by the QZ algorithm. However, it is based on the condition that the QEP has no eigenvalues on the
imaginary axis. Although this approach still works for some cases when the condition is violated, the cyclic
reduction or SDA method for the maximal solution of the nonlinear matrix equation converges much slower.
In this paper, using the concept of model updating, we propose an eigenvalue shifting technique to transform
the original gyroscopic system to a new gyroscopic system, shifting all purely imaginary eigenvalues to
eigenvalues with nonzero real parts. Hence the SDA method can be applied to the new system with quadratic
convergence rate. Numerical examples illustrate the efficiency of our approach.
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