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Abstract

We consider the quadratic eigenvalues problem (QEP) of gyroscopic systems (A°M + 4G + K)x = 0, where M =
M'",G=—-G" and K =K' € R™" with M being positive definite. Guo [Numerical solution of a quadratic eigenvalue
problem, Linear Algebra and its Applications 385 (2004) 391-406] showed that all eigenvalues of the QEP can be found by
solving the maximal solution of a nonlinear matrix equation Z + AT Z~'A = Q with quadratic convergence when the QEP
has no eigenvalues on the imaginary axis. The convergence becomes linear or more slower (Guo, 2004) when the QEP
allows purely imaginary eigenvalues having even partial multiplicities. In this paper, we consider the general case when the
QEP has eigenvalues on the imaginary axis. We propose an eigenvalue shifting technique to transform the original
gyroscopic system to a new gyroscopic system, which shifts purely imaginary eigenvalues to eigenvalues with nonzero real
parts, while keeps other eigenpairs unchanged. This transformation ensures that the new method for computing the
maximal solution of the nonlinear matrix equation converges quadratically. Numerical examples illustrate the efficiency of
our method.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The quadratic eigenvalue problem (QEP) is to find scalars 4 € C and nonzero vectors x € C" satisfying
00)x = (M + .C+K)x =0, (1.1

where M, C,K are n x n matrices. The scalar A and the nonzero vector x are called, respectively, the eigenvalue
and the (right) eigenvector corresponding to A. The nonzero vector y € C” satisfying

Y O0() =y (M +2C+K)=0

is called the left eigenvector corresponding to 4. Here y* = §' denotes the conjugate transpose of y. The
quadratic matrix polynomial Q(/Z) in Eq. (1.1) is, generally, known as a quadratic pencil. The QEP arises
in a wide variety of applications, such as dynamics analysis of mechanical systems, fluid mechanics and
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vibro-acoustics, which has received much attention in recent years. A good survey of applications, spectral
theory, perturbation analysis and numerical approaches can be found in Ref. [2] and the references therein.
In this paper, we develop a numerical method for a special QEP of the form

GO)x = (M + G + K)x = 0, (1.2)

where M=M',G = -G',K =K' € R”™" with M>0 being positive definite. There is a second-order
differential equation

Mq(?) + Gq(1) + Kq(2) = 1(2)

associated with Eq. (1.2), which is known as a gyroscopic system. Gyroscopic systems correspond to spinning
structures where the Coriolis inertia forces are taken into account, and they are widely known to exhibit
instabilities [3,4].

It is well known that the 2n eigenvalues of G(A) has Hamiltonian properties, i.e., they are symmetrically
located with respect to the real and imaginary axes. Furthermore, if x is the right eigenvector corresponding to
an eigenvalue /, then X is the eigenvector (or the left eigenvector) corresponding to / (or —A). When K is
positive definite, all eigenvalues of G(A) are purely imaginary and semisimple, and the system is stable. Strong
stability, which refers to a system and all its neighbors being stable, has been investigated in Ref. [4]. When K
is negative definite, the eigenvalues of G(/) are not necessarily purely imaginary and semisimple, hence the
system is not guaranteed to be stable [2].

In this paper, we consider the QEP (1.2) with K being negative semidefinite, and we are interested in finding
all 2n eigenvalues and the associated eigenvectors. A standard approach for finding all eigenpairs of the QEP is
to work with a 2n x 2n linearized form and compute its generalized Schur form. However, such approaches
cannot generally keep the Hamiltonian structure. To this end, we can transform the QEP (1.2) to a
Hamiltonian eigenvalue problem [2], and then apply the structure-preserving methods [5,6] for computing all
eigenvalues. The skew-Hamiltonian structure is preserved in both methods by the use of symplectic
orthogonal transformations. Note that these methods work on matrices of dimension 2n and produce no
eigenvectors. Mehrmann and Watkins [7] proposed a structure-preserving shift-and-invert Krylov subspace
method for the computation of a few eigenvalues and eigenvectors of large, sparse skew-Hamiltonian/
Hamiltonian pencils, and applied the method to the QEP (1.2). Recently, Guo [1] shows that all the eigenpairs
of the QEP (1.2) can be solved by finding a proper solvent S of the quadratic matrix equation
MS? + GS + K = 0, which is equivalent to find the maximal solution Z, of a nonlinear matrix equation
(NME) Z+A"Z'A = Q, with A=M + K+ G and Q = 2(M — K). The numerical approach for the NME
developed in Ref. [1] is based on the cyclic reduction method [8]. The method is quadratically convergent if
Y(2)=*AT +2Q + A has no unimodular eigenvalues, and is linearly convergent if all unimodular
eigenvalues of Z;IA are semisimple. Another efficient method for solving the NME based on the SDA
algorithm [9] is shown to be linearly convergent if the unimodular eigenvalues of erlA have half of the partial
multiplicity of the associated unimodular eigenvalue of y/(A).

Linear convergence is poor. The main purpose of this paper is to provide a new technique to shift the purely
imaginary eigenvalues, while keeping the other eigenpairs unchanged. We then apply the structure-preserving
methods in Ref. [1] or [9] to find the maximal solution of the resulted NME with quadratic convergence.

The paper is organized as follows. In Section 2, we review some results in Ref. [1] on how to solve the QEP
by the solvent approach, and the SDA algorithm and the related convergence analysis in Refs. [10,9]. The
main technique of shifting the purely imaginary eigenvalues of the QEP is developed in Section 3. Some
numerical examples are shown in Section 4 to illustrate the efficiency of our approach. Some conclusions are
given in Section 5.

2. Solving the QEP

As described in Section 1, the classical approach for finding all 2n eigenpairs of the QEP is to use
linearizations and solve the resulting 2n x 2n standard or generalized eigenvalue problem. These methods
operate in dimensions twice that of the original problem. Another approach is to factorize G(4) in Eq. (1.2). It
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is well known that G(4) has the factorization

G(2) = (M +MS + G)(AUL-S) (2.1)
if and only if S is a solution of the quadratic matrix equation
MS? +GS+K =0. (2.2)

Such an S is called a solvent of Eq. (2.2) [3]. If Eq. (2.2) has a solvent S, then the eigenvalues of G(A) are those
of S and those of the matrix pencil AM + MS + G. However, Eq. (2.2) may not have any solvent. Even if the
solvent exists, the computation involved may be difficult. Fortunately, for the special QEP (1.2), Guo ([1],
Lemma 1) proved that if the QEP (1.2) has no eigenvalues on the imaginary axis, then the matrix equation
(2.2) has a real solvent whose eigenvalues are on the right half-plane. Therefore, if we can find such S, the
remaining n eigenvalues of G(1) are obtained by symmetry without any computation. Moreover, since S is
real, the complex eigenvalues of S must appear in complex conjugate pairs. Together with the eigenvalues on
the left half-plane obtained by symmetry, the Hamiltonian structure for the eigenvalues of the QEP (1.2) is
preserved. The eigenvectors can be obtained from the factorization (2.1) and the properties of eigenvectors of
the QEP (1.2). If x; and y, are, respectively, the right and left eigenvectors corresponding to an eigenvalue 4; of
the solvent S, or

Sx; = AiX;, YIS =Ay;,
then x; and (A;M + MS + G)_Tyi are eigenvectors corresponding to +4;, both eigenvalues of the QEP (1.2).

It seems difficult to find the solvent of Eq. (2.2) directly whose eigenvalues are on the right half-plane.
Instead, the Cayley transformation S = (I+ Y)(I — Y) ™! is used (see Ref. [1]). Eq. (2.2) then becomes

ATY + QY +A =0, (2.3)
where
A=M+K+G, Q=2M-K)>0. (2.4)

Recall that the eigenvalues of S lie on the right half-plane. With the Cayley transformation, we are now
interested in the solution Y of Eq. (2.3) whose eigenvalues are inside the unit circle. With Y = —Z~'4 in Eq.
(2.3), we arrive at the NME:

Z+ATZ7'A=Q. (2.5)

The solution Z of Eq. (2.5) satisfies p(Z~'A)<1 or p(Z~'A)<1 under appropriate assumptions. Here p(-)
denotes the spectral radius of a matrix.

Eq. (2.5) has been well studied in Refs. [8,10-12]. We are interested in finding the maximal symmetric
positive definite solution of Eq. (2.5). A symmetric positive definite solution Z, is called a maximal solution if
Z.. >7 for any symmetric positive definite solution Z of Eq. (2.5). Here Z, >Z, (Z, >Z,) means that Z; —
7, >0 positive semidefinite (>0 positive definite). The following result about the maximal solution of NME
was given in Refs. [11,12]:

Theorem 2.1. Eq. (2.5) has a symmetric positive definite solution if and only if Yy(i) = IA+Q+ A7'AT is
regular (i.e., the determinant of (1) is not identically zero) and (1) =0 for all A on the unit circle. Furthermore,
if Eq. (2.5) has a symmetric positive definite solution, it has a maximal solution Z .. with p(erlA)S 1. For any
other symmetric positive definite solution Z., it holds p(Z~'A)> 1. Moreover, p(Z;lA)< 1 if and only if Y(1)>0
for all A on the unit circle.

Two theorems in Ref. [1] show the relations between the NME (2.5) and the QEP (1.2).

Theorem 2.2 (Guo [1, Theorem 6]). The QEP (1.2) has no eigenvalues on the imaginary axis if and only if
() = A+ Q + 2'AT >0 for all ). on the unit circle, where the matrices A, Q are given in Eq. (2.4).

Theorem 2.3 (Guo [1, Theorem 7]). Assume that y(1)=0 for all / on the unit circle and let Z.,. be the maximal
solution of Eq. (2.5). Then the eigenvalue of —Z;IA are precisely the eigenvalues of $p(2) = *AT + 1Q + A
inside or on the unit circle, with the same partial multiplicities for each eigenvalue inside the unit circle and with
half of the partial multiplicities for each unimodular eigenvalue.
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Guo [1] also proved that y; is an eigenvalue of ¢(p) if and only if 2; = (1 4+ w;)/(1 — y;) is an eigenvalue of
G(2), and the partial multiplicities of y; and /; are invariant. Together with these two theorems, we can see that
all eigenvalues of the QEP (1.2) can be found by solving the eigenvalues of —Z;IA, where Z is the maximal
solution of Eq. (2.5), under the assumption that (1) >0 for all / on the unit circle. Moreover, if x; and y; are,
respectively, the right and left elgenvectors of -7 'A correspondmg to u;, then x; and y; are, respectively, the
right and left elgenvectors of S=(I- 1A)(I + Z 1A) corresponding to 4; = (1 + y;)/(1 — y;). Hence, x;
and (LM +MS +G)™ " y,; are the eigenvectors of the QEP corresponding to £4;.

The problem is now reduced to computing the maximal solution of Eq. (2.5) efficiently. Several numerical
methods have been proposed, including the cyclic reduction method [8] and the structure-preserving doubling
algorithm [9]. These algorithms are similar, but the convergence analysis of the structure-preserving doubling
algorithm is simpler. The structure-preserving doubling algorithm is as follows.

Algorithm 2.1.
A=A, Q=Q, P=0,
A1 = AQ — P A,
Qi1 = Qe — AL (Q — P 'A,,
Pt = Pr— AQ — PO AL
One step of Algorithm 2.1 requires %n3 flops, similar to that of the cyclic reduction method [§].

To ensure that the iteration in Algorithm 2.1 is well-defined, Q; — P, must be symmetric positive definite
for all k. This is guaranteed by the theorem in Ref. [9], which describes the convergence of Algorithm 2.1.

Theorem 2.4 (Lin and Xu [9]). Assume that Z.> 0 is a solution of Eq. (2.5), and let R = Z~'A. Then the matrix
sequences {Ar}, {Qy} and {Py} generated by Algorithm 2.1 are well-defined and satisfy:

1. A¢ = (Z — PR
2. 0<P <P 1 <Z anko—Pk_(Z Pk)+Ak(Z Py~ Ak>OZ
3. Z2<Qu <Qu<Qand Q — Z = (RT* (Z — P)R* <(R7)* ZR*".

Moreover, if the maximal solution 7., satisfies p(S.)<1, where S, = ZIIA, we have

.
AL <NZi12lISE 0, — 0 as k — oo,
1Z+ — Qlla<IZ 11,1187 ||2 -0 ask— oo.

Theorem 2.4 shows that Algorithm 2.1 converges quadratically when no eigenvalues of Z._ 'A lies on the unit
circle. When p(Z_ 'A) = 1, Chu et al. [10] proved the following result.

Theorem 2.5. Assume that Z, is the maximal solution of Eq. (2.5), and p(Z 'A) = 1. If the partial multiplicities
of L YA associated with the unimodular eigenvalues are all even, then the matrix sequence {Qy} generated by
Algorlthm 2.1 converges to Z with convergence rate 1/2.

3. Eigenvalue shifting

Theorem 2.2, together with Theorems 2.1 and 2.4, show that if the QEP (1.2) has no eigenvalues on the
imaginary axis, the matrix sequence {Q,} generated by Algorithm 2.1 converges quadratically to the maximal
solution Z, of the NME (2.5). However, if the QEP (1.2) has eigenvalues on the imaginary axis, then
Y(2) = A’AT 4+ 2Q + A has eigenvalues on the unit circle (because of the Cayley transformation involved).
Hence if the conditions in Theorem 2.5 hold, Algorithm 2.1 still converges, but with a linear or slower
convergence rate. So it is desirable to shift purely imaginary eigenvalues away from the imaginary axis while
keeping the remaining eigenpairs invariant.
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Chu et al. [13] discussed model updating problems with no spill-over for quadratic pencils, which
incorporates the original quadratic model with some measured data. The updated model matches the
measured data preserving part of original eigenstruture. Based on this approach, we transform the original
gyroscopic system (M, G, K) to a new gyroscopic system

(M, G,K) = (M + AM, G + AG, K + AK),

with AM = AM",AG = —AG',AK = AK" such that the original eigenvalues on the imaginary axis are
shifted away from the imaginary axis while preserving the other part of the original eigenstructure.
It is well known that for G(4), there exist an n x 2n eigenvector matrix X and an 2n x 2n eigenvalue matrix J

J
in Jordan canonical form such that {XJ] is nonsingular and

MXJ? + GXJ + KX = 0. (3.1)

Here (X, J) is referred to as a Jordan pair of G(/). Suppose that J and X are partitioned as J = diag(J,, J,) and
X = [X X;], where X, consists of the generalized eigenvectors corresponding to J;. The following theorem
gives an orthogonalization relationship between eigenvalue matrices and eigenvector matrices.

Theorem 3.1. Consider G(1) = *M + AG + K with M =M being positive definite, G = -G, K =K'. Let
(X1, d1) and (X3, d2) be defined as above. If o(J1) N o(—=J2) = @, then we have

(i) I X MXyJ, + X[ KX, =0, (3.2)
(ii) J| X{ GXaJy — X[ KXoJs + I/ X[ KX, = 0, (3.3)
(i) X MXoJ, — J{ X MX, + X[ GX, = 0. (3.4

Proof. We first prove Eq. (3.4). Obviously, (X;,J;) and (X5, J;) satisfy

MX,J2 + GXaJs + KX, = 0, (3.5)
JITXIM-J/X/G+X/K=0. (3.6)

Multiplying Egs. (3.5) and (3.6) by XlT and X, on the left and the right, respectively, and eliminating XITKXQ
we obtain

X[ MX,J3 + X[ GXoJs = JTTXMX; — J[ X[ GX,. (3.7)
Rewrite Eq. (3.7) into

(X[ MXaJ, — J[X]MX; + X] GXo)J,
+ I/ (X[MX,J, — J[X]MX; + X[ GX;) = 0. (3.8)

By the assumption a(J;) N o(—J,) = @ and applying the Lyapunov Theorem to Eq. (3.8) we get
X{MXyJ; — J[ X MX; + X[ GX; = 0.

The relations of Egs. (3.2) and (3.3) can be shown in a similar way by eliminating the ‘G-term’ and ‘M-term’ in
Egs. (3.5) and (3.6), respectively. [
Now we assume that J; contains all eigenvalues lying on the imaginary axis. To avoid complex arithmetic,

we assume that J; € R“F and X, € R™* are of the forms

J1=diag(P1,...,P5; Nla"'aNf)a Xlz[Yla"‘,YS; Zla"'aZl‘]v (39)
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with
A1
i K 2m;x2m; 0 %
P = € R A = , (3.10)
AT - 0
Aj
Yj = [y(lll)b y(lll)ﬂ R} yg;),R’ yr(7]7),1] € Ranmj’ ] = 1)‘ -5
and
0 1
N/ _ . 0 1 e Rn/Xﬂj, (3.11)

0
Zi=[m. ... 2R, =11

Here P; contains the purely imaginary eigenvalues =io; with partial multiplicities m; and m;, and y(1/1)e +

iy(g, e ygj)/ rE iyg?/_ ; are the associated generalized eigenvectors (j = 1,...,s); N; contains the zero eigenvalues
with partial multiplicities n;, and zy,...,z,, are the associated generalized eigenvectors (j = 1,...,7). We say
that xi,...,X,, are the generalized eigenvectors corresponding to the eigenvalue 4y provided that
G(Z0)x1 =0,
G(Z0)x2 + (220M + G)x; =0,
G(Lo)x3 + 24M + G)x; + Mx; = 0, (3.12)

G(/l())Xm + (2A40M + G)xy—1 + Mx,,,_» = 0.

On the other hand, (X5, J5) is the part of eigenstructure with eigenvalues having nonzero real parts which we
want to preserve. Hence, the triplet of (AM, AG, AK) satisfies

(M + AM)X1J2 + (G + AG)XyJ; + (K + AK)X; = 0.
From Eq. (3.5) it implies
AMX,J3 + AGX,J; + AKX, = 0. (3.13)
The next theorem gives a sufficient condition for Eq. (3.13).

Theorem 3.2. Let

AM = MX,®X M, (3.14)
AG = MX;®X| G + GX;®X[ M — MX,;®J | XM + MX,J; ®X| M, (3.15)
AK = (MX1J; + GX))®(—J| XM + X[ G). (3.16)

Then for any real symmetric matrix ®, (AM, AG, AK) defined by Eqs. (3.14)—(3.16) is a solution to Eq. (3.13)
satisfying AM = AMT,AG = —AG',AK = AK.

Proof. It is easy to verify that if @ is symmetric, (AM, AG, AK) defined by Eqgs. (3.14)—(3.16) satisfies
AM = AM',AG = —AG'",AK = AK .

Since J; contains all eigenvalues on the imaginary axis, the condition o(J;)Na(=Jdy) =0 is
automatically satisfied, thus Eq. (3.4) holds. By direct calculations using Egs. (3.14)~3.16), and
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from Eq. (3.4), we have

AMX,J3 4+ AGX,J; + AKX,
= MX,; ®X| MX,J3 + MX;®X| GX,J; — MX; ®J| X MX,J, + GX;®X| MX,J,
+ MX, J;®X MX,J; + (MX1J; + GX)®(—J{ X[ M + X G)X,
= MX; ®(X] MXoJ> — J[ X[ MX; + X[ GXo)J»
+ (MXJ; + GX)®(X{ MX,J; — I/ X[ MX; + X[ GXy)
= 0. O (3.17)

Remark. (i) In Theorem 3.2, we use Eq. (3.4) to show that Eq. (3.13) holds. Similarly, we can use Eq. (3.2) to
show that (AM, AG, AK) of the forms

AM = MX, J;®J [ X[ M,
AG = MX,J;®X K — KX ;®J XM,

AK = —KX;®X|K

with @ being symmetric, also satisfies (3.13). Unfortunately, if K is singular, then K + AK = (I — KXI(DXlT)K
is still singular. Consequently, the zeroes eigenvalues of the original gyroscopic system are invariant in the new
updated gyroscopic system. This is not the case what we required.

(ii) In Theorem 3.2 we show that the eigenstructure (X3, J,) of the original model (M, G, K) is preserved in
the new updated model when the incremental triplet (AM, AG, AK) is given by Egs. (3.14)—(3.16).

The following theorem shows that the relation of eigenvalues between the original model and the updated
model.

Theorem 3.3. Let (AM,AG,AK) be given by Egs. (3.14)~(3.16). Define (M, G,K) = (M + AM,
G + AG,K + AK). Then the eigenvalues of G(J) = J*M + G + K are those of J, together with those of the
matrix pencil

(J; + ®I[ X MX, — ®X] GX,,1 + ®X]MX)). (3.18)
Proof. From MXlJf + GX J; + KX; =0, we have
G(A)X| = (M + G + K)X| = (UMX; + MX,J; + GX))(AI — J))
which implies that
(MX; +MXJ; + GX)) = GOX, (AT —J)) L.
From Egs. (3.14)~(3.16), we have

G(2) = 22 (M + AM) + A(G + AG) + (K + AK)
= G(2) + 2*MX; ®X| M + A(MX,®X] G + GX,®X]M — MX,;®J XM
+ MX,J, X M) + (MX;J; + GX)®(—J| XM + X/ G)
= G(A) + UMX,; + MXJ; + GX))®( XM - J[X/M + X/ G)
= G() + GX (A = J) ' ®UXM = J[ XM + X[ G)
= GAI+ X1 = J)'®UXM - J[ XM + X G)).
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Hence, with the help of det(I + RS) = det(I + SR), where R € C"™™ and S € C"™*", we have
det(G(2))
= det(G(2) det (I + X; (I — J1) ' ®UX[M — J[ XM + X| G))
= det(G(2)) det(I + (A1 — J1) "' ®@UX]MX; — J] X MX, + X] GX)))
= det(G(2) det (2L — J)) ") det (2 — J; + ®UX] MX; — JX[MX, + X] GX)))
= det(G(2) det (2L — J))7") det (20 + ®X| MX)) — (J; + ®J] X/ MX,; — ®X| GX))).

Since G(A) has the eigenvalues of J;, the above equality shows that G(1) and G(/) share the same spectrum,
except that the eigenvalues of J; are replaced by those in

Ji + @I X/ MX, — ®X]GX,, I + ®X/MX;). O

Remark. (i) Theorem 3.3 shows that G(1) keeps the eigenvalues of G(1) with nonzero real parts and changes
all purely imaginary eigenvalues of G(/) to those eigenvalues of the pencil in Eq. (3.18). The new updated
quadratic pencil G(2), generically, has no eigenvalues on the imaginary axis for a randomly chosen symmetric
matrix @.

(1) If @ is chosen to be positive semidefinite, then AM defined in Eq. (3.14) is positive semidefinite, and AK
in Eq. (3.16) is negative semidefinite, which ensures that the corresponding Q = 2(M — K) is still positive
definite.

For the computation of (Xj,J;), we apply the Newton’s method [14] to find a purely imaginary eigenvalue
iw of G(A) and the associated eigenvector y + iz satisfying G(iw)(y + iz) = 0. This eigenequation can be
reformulated by the nonlinear equation in { =[y', z', w]" with an additional normalization condition:

T (—*M + K)y + oGz
7l | 2 =7 =|T0) | = | -Gy + (—o’M+K)z | =0. (3.19)
o T3(¢) yy+z'z—1
We differentiate and obtain the Fréchet derivative of Eq. (3.19)
—o’M +K oG —2wMy + Gz
T |z = -G —0’M+K —Gy-20wMz |. (3.20)
o) 2y" 2z 0

Newton’s method now amounts to solving a (2n + 1)-dimensional linear system in each iteration with an
initial vector {:

TGy — &) = =T, (3.21)

where §, = [y/, z/, »®™]". The Newton’s method (3.21) is equivalent to the inverse iteration which is more
conveniently formulated as

—o®’M + K PG Wi —20PMy, + Gz 3.02)
—o®G —o®M+K || Vkr1 |~ | =Gy, — 209Mz; |’ (3.22a
WD — o L (3.22b)
Vi Wt + 2 Vir
y 1 Uy
[ s ] - [ * ] . (3.22¢)
o \/ul1c—+1“k+1 + V11—+1Vk+1 Vil

The symmetric linear system (3.22a) can be solved by the LDL'-factorization (see e.g. Ref. [15]) which
requires 313 flops.
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Once the inverse iteration (3.22) converges to [y', z', w]", we can apply Eq. (3.12) by setting 4y = iw and
X| =y + iz to compute the Jordan basis Xj, and the Jordan block Jy, corresponding to iw. The following
algorithm computes the Jordan basis X; and the Jordan block J; corresponding to purely imaginary
eigenvalues of G(A). For convenience, we suppose that the geometrical multiplicity of each nonzero purely
imaginary eigenvalues is one.

Algorithm 3.1 (Initiation). J, =3, X; =0, T = 9,U = 0,K,; =K, R>1,0¥ = £¢>0, Tol = tolerance;

1. If K; is singular or nearly singular, then
1.1. Compute ||K;x;||<Tol with x; L. U and ||x;|| = 1;
1.2. Set w:=0, U=[U, x,],K;:=K; — UU", go to 5; else
2. If o® > R, stop; else
3. Choose y© +iz® 1 U with [|y©@ +iz®| = 1;
4. Compute Eq. (3.22) until convergence; Set 0 < o**V x; « y**D 4 izk+) U =[U, x];
5.7 =2,x0 =0,Xy,, = [x1], J10, = [i0];
5.1. Compute [|&] G(iw)|| < Tol with [|&,[| = 1;
5.2. Compute b = —(2ioM + G)x;_1 — Mx;_»,

If &/ b3 Tol, then go to 6; else
Solve G(iw)x; = b,
Jiw

Xio=[X1w, Xj],Jm:{ 0

J < Jj+ LXj2 < X_1,X;_| < X, repeat 5.2;
6. X;:=[Xi, Xip], J1:=J1 & Ji0, T:=T U {iw};

e, T
. ],wheree*z[O,...,O,l] ,
iw

If K, is singular or nearly singular go to 1.1; else
0 — 0 4+ 2|0 — 0©|; go to 2.

Remark. (i) The shift-strategy 0@ :=0® + 2|o — ©| in Step 6 is proposed by Ericsson and Ruhe [16].
(ii) The solution x; of the symmetric linear system G(iw)x; = b in Step 5.2 can be regarded as a deflated
solution and can be solved by the LDL"—factorization obtained by the (k + 1)—step in Eq. (3.16) [17].

In summary, we have the following algorithm for solving the QEP (1.2).
Algorithm 3.2.

1. Compute (X, J;) by Algorithm 3.1, and choose a real symmetric positive semidefinite matrix ®.
2. Compute the eigenvalues of the matrix pencil (3.18).
3. Compute AM, AG, AK defined by Eqgs. (3.14)—(3.16), and set

A=M+AM+G+AG+K+AK, Q=2(M+AM —K — AK).

4. Apply Algorithm 2.1 to find the maximal solution Z, for the NME (2.5).

5. Find the eigenvalues y; of —erlA, forj=1,...,n.

6. Compute the eigenvalues 4; = (1 4+ w;)/(1 — ;) on the right half-plane, and obtain the eigenvalues on the
left half-plane by symmetry.

7. Replace the eigenvalues of the matrix pencil (3.18) by those of Jj.

8. If eigenvectors are required, compute the right and left eigenvectors x; and y; of —Z;IA corresponding to g
in Step 5 first, and then compute eigenvectors x; and (4;M + MS + G)*Tyi of G(A) corresponding to £4;,
respectively.

9. Replace the eigenvectors corresponding to the eigenvalues of the matrix pencil (3.18) by the columns of X.

Remark. For the choice of ® in Step 1, numerical experiments show that letting ® = yI is generally good
enough. We are to find a suitable y such that the resulted eigenvalues of the pencil (3.18) after the Cayley
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transformation are far from the unit circle which speeds up the convergence of Algorithm 2.1. If y = 0, the
eigenvalues of the pencil (3.18) are just those of J;, which lie on the unit circle after the Cayley transformation.
On the other hand, if y is chosen large, the norms of AM, AG, AK in Egs. (3.14)—(3.16) may be too large to
cause large errors to eigenvalues of the original pencil. Considering these two facts, we choose a y between 1
and a suitable positive number so that the distance to the unit circle is maximized. Fortunately, numerical
experiments show that a few steps of Fibonacci line search is sufficiently good to find a desired y.

4. Numerical examples

To illustrate the performance of Algorithm 3.2, we present numerical results of three examples, using
MATLAB 6.5 with machine accuracy ¢ = 2.22 x 1076,

Example 1. Let

R 01@02@09K00®00®—10
R S B 2 0 —g 0> T o —2 0 a 0 b
with a = —5.000002000001, » = —16.000016000004, g = 9.000012000003. We randomly generate an ortho-

gonal matrix Q and define the coefficient matrices for the QEP (1.2) by

M=QMQ', G=QGQ', K=QKQ".

The QEP has four zero eigenvalues with partial multiplicities 2 and 2, and the other nonzero eigenvalues
+1,+£1.000001, £2, £2.000001.

Table 1 shows the numerical result by applying Algorithm 3.2 with ® = 501 and Algorithm 3 in Ref. [1]
(Guo’s algorithm), respectively, to Example 1. Here and hereafter, ‘No. of iterations’ refers to the number of
iteration steps of Algorithm 2.1 (SDA algorithm) applied to the NME (2.5), ‘Residuals’ refers to ||(1*M +
AG + K)x||, for an computed eigenpairs (4,x), and ‘Total flops’ denotes the total flop counts for the
computation of (X;,J;) and the desired Z, by Algorithm 3.1 and Algorithm 2.1, respectively. Algorithm 3.1
needs about §n3 +0@?) flops to find (X;,J;) for the zero eigenvalues. So, the total flops are
§n3 + 6 x %n3 + O(n?).

Obviously, Algorithm 3.2 and Guo’s algorithm converge with the same accuracy, while Algorithms 3.2
converges much faster than Guo’s algorithm. The detailed convergence behaviors of both algorithms are
illustrated in Table 2, where the quadratic convergence for Algorithm 3.2 and the linear convergence for Guo’s
algorithm are clearly shown.

Example 2. Let

0 V15
—J15 0

w=[y SoJe[s Dleld 5

M=l G=

0 1
o|” o]e

0 V7
-7 0]

Table 1
Numerical results of Example 1

Algorithm 3.2 Guo’s algorithm
No. of iterations 6 44
Residuals <1071 <1071

Total flops D + O(n?) M3 4+ 0(n?)
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Table 2
Convergence behaviors of both algorithms for Example 1

Iteration steps Algorithm 3.2 Iteration steps Guo’s algorithm
1 7.936 x 107! . .

2 6.343 x 1073 35 1.008 x 107°

3 2.186 x 107* 36 4.992 x 1077

4 1.185 x 1077 37 2.399 x 1077

5 1.043 x 10714 38 1.029 x 10~

6 0

Table 3

Numerical results of Example 2

Algorithm 3.2 Guo’s algorithm
No. of iterations 7 >10000
Residuals <10712 >1
Total flops 123 L 0(n?) N
Table 4
Convergence behaviors of Algorithm 3.2 for Example 2
Iteration steps Algorithm 3.2
1 7.149 x 107!
2 6.465 x 1072
3 1.993 x 1073
4 2.018 x 107
5 7.883 x 107
6 1.203 x 107"
7 0

We randomly generate an orthogonal matrix Q and define
M=QM;Q", G=QGQ", K=QK,Q'

for the coefficient matrices of the QEP (1.2). The QEP has two purely imaginary eigenvalues +2i having
partial multiplicities 1 and 1, and the other eigenvalues £2, :I:% + */771 and :I:*/T7 + %i. Note that K is indefinite in
this example, but M — K is positive semidefinite. Hence both Algorithm 3.2 and Guo’s algorithm still work for
this example.

Inverse iteration of Step 4 in Algorithm 3.1 converges in 9 steps to £2i and the associated eigenvectors. So,
to find (Xy,J;) by Algorithm 3.1 needs about Z#° + O(n?) flops. Then we choose ® = I in Algorithm 3.2 to
compute the desired Z; which needs about 7 x 1n® + O(n?) flops.

Tables 3 and 4 show the numerical results of Algorithm 3.2 and Guo’s algorithm. Table 4 clearly shows the
quadratic convergence of Algorithm 3.2, while Guo’s algorithm does not converge after 10 000 steps, since two
purely imaginary eigenvalues are transformed on the unit circle with partial multiplicities 1 and 1 by the
Cayley transform, which violates the condition in Theorem 2.5.

Example 3. Consider the QEP (1.2) with coefficient matrices

3 -4 0
} K=K1®[ },

-3 0 0 -1

1 0 0
MZM]@{O 1], G=G1€B{
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Fig. 1. Eigenvalues of Example 3.

Table 5
Numerical results of Example 3
Algorithm 3.2 Guo’s algorithm
No. of iterations steps 7 31
Residuals <1071 <1071
Total flops nd + 0(n?) Ulpd 4+ 0(n?)
Table 6
Convergence behaviors of both algorithms for Example 3
Iteration steps Algorithm 3.2 Iteration steps Guo’s algorithm
1 5275 x 107! :
2 9.049 x 1072 24 1.629 x 1078
3 8.476 x 1073 25 8.095 x 10~°
4 1.562 x 107 26 3.950 x 10~
5 1.964 x 107¢ 27 1.796 x 107°
6 7.544 x 1071 28 6.324 x 10710
7 0

where M, G| and K, are 100 x 100 matrices chosen from Example 6.1 of Ref. [7]. The eigenvalues of the QEP
computed by the Matlab function ‘polyeig’ are plotted in Fig. 1, with two eigenvalues ++/2i on the imaginary
axis having partial multiplicities 2 and 2.

Inverse iteration of Step 4 in Algorithm 3.1 converges in 5 steps to obtain the purely imaginary eigenvalues
++/2i and the associated eigenvectors. So, Algorithm 3.1 needs about ?n*‘ + O(n?) flops for finding (X;, Jy).
Next we choose @ = 501 in Algorithm 3.2 to compute the desired Z, which needs about 7 x %n3 + O(n?) flops.

Table 5 shows the numerical result of Algorithm 3.2 and Guo’s algorithm, and Table 6 illustrates the
convergence behaviors of both algorithms. Clearly, both algorithms converge with high accuracy, while
Algorithm 3.2 converges much faster than Guo’s algorithm. These three examples clearly show the benefit of
shifting technique of purely imaginary eigenvalues.
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5. Conclusions

In Ref. [1], Guo proposed an algorithm for computing all eigenvalues of a quadratic eigenvalue problem
arising from gyroscopic systems, by finding a proper solvent of the quadratic matrix equation
MS? + GS + K = 0. Using a fine transformation, the problem can be transformed by solving the maximal
solution of the nonlinear matrix equation Z +A'Z 'A =Q with A=M+ G +K and Q =2(M —K). A
cyclic reduction method, or the equivalent SDA method, can be applied. This approach preserves the
Hamiltonian structure of the spectrum of the QEP, and is less expensive than the linearization approach
followed by the QZ algorithm. However, it is based on the condition that the QEP has no eigenvalues on the
imaginary axis. Although this approach still works for some cases when the condition is violated, the cyclic
reduction or SDA method for the maximal solution of the nonlinear matrix equation converges much slower.
In this paper, using the concept of model updating, we propose an eigenvalue shifting technique to transform
the original gyroscopic system to a new gyroscopic system, shifting all purely imaginary eigenvalues to
eigenvalues with nonzero real parts. Hence the SDA method can be applied to the new system with quadratic
convergence rate. Numerical examples illustrate the efficiency of our approach.
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